



#### How Moon Rocks can Save the Earth

Presented at ISDC May 29, 2008

Peter J. Schubert, Ph.D. Senior Director for Space & Energy Research

#### Topics



Motivation The ultimate answer for baseload power Critical Component – Oxygen extraction Supersonic Dust Roaster (patent pending) Critical Component – Silicon beneficiation Isotope Separator (US 6,630,304 & 6,618,014) Critical Component – Solar Power Satellites Invented in 1968 by Peter D. Glaser Summary

#### Motivation

- Humans use 447 Quads/year now
- We will need 702 by 2030
- In 26 years, need 8,500 GW extra
- Must build 328 GW per year!
  - Itaipu is largest at 15 GW (6 yrs, \$19B)
  - Mega-nuclear at 5-8 GW (8 yrs, \$25B)
- Humanity needs a HUGE, RENEWABLE, SCALABLE, CLEAN power source.

### We MUST use the SUN (need 8500 GW by '30; 14,000 by '50)

| <u>RENEWABLE</u>    | <u>AVAILABLE GWs</u> |
|---------------------|----------------------|
| Wind                | 4000                 |
| Biomass             | 7000                 |
| Tide/Ocean          | 2000                 |
| Hydroelectric       | 900                  |
| Terrestrial Solar 👩 | 600,000              |
| Orbital Solar       | 660,000              |

#### Terrestrial vs. Orbital Solar

| <u>GROUND-BASED</u>       | Solar Power Satellites |
|---------------------------|------------------------|
| 40% insolation            | 100% insolation 😴      |
| 880-1050 W/m <sup>2</sup> | 1357 W/m <sup>2</sup>  |
| Black-outs 12 hr/day      | Black-outs 4 hrs/year  |
| Low pollution             | Very low pollution     |
| Regional solution         | Global solution        |

#### **SSP from Lunar Materials**



The Moon is 21% silicon 7% aluminum - for metal contacts Lunar escape velocity = 2.4 km/s • For Earth  $v_{e} = 11.8$  km/s • Remember that K.E. =  $\frac{1}{2}$  mv<sup>2</sup> (24X) Abundant solar power (70% at poles) Ultra-high vacuum (10<sup>-11</sup> Torr) Luna has everything needed for SSP!

#### launch seen from ISS

#### "tower" SPS

rectenna

railgun launcher

#### Critical Component - Oxygen

- The Moon is 42% oxygen!!!
- Oxygen is essential for:
  - Life support
    - You need 0.84 kg/day
  - Propellant
    - 88% of mass for H<sub>2</sub>+O<sub>2</sub> rockets
- On-site oxygen production enables:
  - Continuous human presence
  - Larger payloads delivered to the lunar surface

#### The Supersonic Dust Roaster



# Risk: Ultra-high Temp 1 atmosphere P<sub>o</sub> needs: 3010°K Radiative heat loss is BIG (αT<sup>4</sup>) Monatomic oxygen O<sup>-</sup> ablation



$$\frac{dP_{\infty}}{dT} = \frac{h_{fg}}{(V_v - V_l)T}$$

Clausius-Clapyron equation

Calculated Vapor Pressure above SiO2 from Schick paper with Shornicov experimental data



#### **Pre-Melt**

Sift fines to 1 mm 92% will pass Liquify with resistance heaters • 1723 °K, 5-7 Poise Gravity fall through apertures  ${}^{\bullet}_{m} = \frac{\pi}{8 \cdot n} (\frac{\Delta P}{L}) R^{4}$ Pressure equilibrate • Bypass tube prevents vapor lock





#### **Free-fall Heating**

Inductive heating of conductive magma
 About 25 <u>siemens-m</u> at 1750 K

Insulating chamber passes rf energy
Avoids direct contact
Wall temperature modulated by radiation shield efficiency



#### Performance



|                 | Mass          | Power |                                                                |
|-----------------|---------------|-------|----------------------------------------------------------------|
| ponent          | ( <b>kg</b> ) | (kw)  | Key Assumptions                                                |
| H pper          | 257           | 49.8  | 50 stream apertures, 45 minute heat-up time                    |
|                 |               |       | Conditions based on temperature, length calculated by matching |
| Free-fall shaft | 143           | 19    | flow rate to evaporation                                       |
| SS nozzle       | 44.8          | 0     | Area relation to determine shape                               |
| Drift tube      | 9.69          | 0     | 1.8 m long, shares same area as the exit of the nozzle.        |
|                 |               |       | Half sphere, tube area 5% of total exit area so we capture 95% |
| Expansion bell  | 1.28          | 0     | flow.                                                          |
| Pumps and       |               |       |                                                                |
| cryochillers    | 62            | 2.16  | Mass of pumps is linearly related to the flow rate.            |
| Passive cooling |               |       |                                                                |
| pipes           | 260           | 0     | Length for radiative cooling from 1200 down to 200 K           |
| Storage         | 100           | 0     | Mass of large storage tank (buried)                            |
| Subtotal        | 876           | 70.9  | 12x12m solar panels                                            |
| Grand Total     | 1302          |       | Assumes 6 kg/kw, including power processing unit               |

#### **System Metrics**



Oxygen production rate = 8.3 kg/hr For 71 kW, efficiency = 8.6 kWh/kg Extraction efficiency = 20% Specific mass = 9 kg-O<sub>2</sub>/kg-regolith System mass = 1.3 MT Yearly output = 61 MT (70% sunlight) Ratio to launch mass = 47 This is 3X better than any other method!

#### **Critical Components - Metals**

#### Aluminum has many uses:

- Metallization on solar cells
- Electrical buses, wires, and cables
- Structural material
- Solid propellant

#### Iron (12%)won't rust, and is used for:

- Structural material
- Canisters for railgun payloads
- Rails for circumpolar railroad
  - Perpetual sunlight enables agriculture!





#### **Critical Component - Silicon**

Photons on P-N junction make power

Make as thin as possible

Collection efficiencies:

Single-crystal: 17%
Polycrystalline: 8%
Orientation: cosine law



Atomic Number:14 Atomic Mass: 28.09





#### Metals Extraction (Si, Al, Fe)

Isotope Separator downstream of Supersonic Dust Roaster:

- Ballista are ionized
- Expanding plasma gated by slits
- Transverse electric field separates by the charge/mass ratio of isotopes  $a = (\frac{q}{-}) \cdot E$
- Collect species
- Accrete slag



US 6,618,014 for zero gravity US 6,630,304 lunar gravity





#### **Critical Component - SSP**

Cis-lunar architecture & infrastructure

- Fabricate solar panels on Luna
- Railgun launch panels in iron canisters
- Receive canisters electromagnetically

   US Patent 7,118,075, AIAA 43<sup>rd</sup> Prop. Cincy 07
- Build solar arrays, link to transmitter
- Beam low-density microwaves to earth
- Receiving antenna directs power to grid



#### **Geometric Manufacturing**

No known power source can meet projected energy needs in time! New power sources must scale GEOMETRICALLY. Lunar factories which are partly selfreplicating may be the only viable long-term energy solution.



#### Scale-up of Lunar-based SSP

**Quasi-Geometric Growth of LB-SSP** 



#### Assumptions – prev. chart

- \$100M/yr operating expenses per unit
- No additional labor costs
  - Until tele-operated robotics take over, assume labor supplied by a government.
- Fe & Al have no monetary value
- Silicon yield is 60%
- Sunlight is 75% available (pole)
- Launch costs at NASA rates



Apollo 11 moon rocks 2.4mm



#### SUMMARY

Space Solar Power from Lunar-based materials may be the technology which saves the Earth.

Work at Packer is advancing several component technologies

Additional R&D at Packer addresses the entirety of human energy needs.

Peter J. Schubert, Ph.D. Packer Engineering, Inc. Naperville, IL, USA (630) 577-1928 pschubert@packereng.com www.packereng.com

## the moonsociety.org